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A variational principle is formulated which enables the mean value and higher 
moments of the solution of a stochastic nonlinear differential equation to be 
expressed as stationary values of certain quantities. Approximations are 
generated by using suitable trial functions in this variational principle and some 
of these are investigated numerically for the case of a Bernoulli oscillator driven 
by white noise. Comparison with exact data available for this system shows that 
the variational approach to such problems can be quite effective. 
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1. I N T R O D U C T I O N  

The mathematical modeling of a wide variety of systems in science and 
engineering gives rise to stochastic nonlinear equations, and the develop- 
ment of reliable and tractable procedures for the approximate solution of 
these is regarded as a matter of great importance. The stochastic element in 
these equations often takes the form of a Gaussian random force which is 
introduced in an ad hoc manner to simulate the effect of those degrees of 
freedom of the system which are not explicitly taken into account in the 
equations of motion and whose behavior is too complicated to be analyzed 
in detail. Dissipative terms also usually appear as a result of this "modeling 
away" of degrees of freedom. As a prototype of such equations we shall 
consider here the Bernoulli oscillator driven by white noise, the equation 
for which may be written 

X(T)  -~ ]~X('[') "-~ •X3(z ") = e("c) (1) 
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where 

(e(~)) =0  

( e ( "r ) e ( "r ' ) ) = (5 ( "r - r ' ) 

with expectation values denoted by angular brackets. The oscillator is 
assumed to evolve from a sharp initial state given by X(0)= x 0 and even- 
tually attains a statistically stationary state as ~ ~ or. Accurate values of 
the time-dependent moments (X(r))  ..... (X4(T)) have been calculated by 
Eaves and Reinhardt ~1~ for particular values of/?, 2, and Xo and their data 
will be used in assessing the accuracy of the approximations considered 
here. The ultimate object of course is to develop methods which can be 
applied to systems with many degrees of freedom without the computation 
involved becoming prohibitively lengthy. 

If we exclude methods based on the Fokker-Planck equation, which 
appear to be impracticable for systems with several degrees of freedom, 
most existing approximation procedures for such equations may be con- 
veniently divided into two categories which will be referred to as 
"decoupling" and "direct" methods. Decoupling methods ~21 seek to derive 
approximate relationships between averaged quantities, such as correlation 
and response functions or reduced probability density functions, by trun- 
cating the infinite hierarchy of equations which they satisfy. This requires 
the introduction of some sort of decoupling procedure and a variety of 
methods, not all convincing, exists for this purpose. Although some simple 
approximations obtained in this way, such as the direct interaction 
approximation, have proved quite effective in certain circumstances, more 
elaborate decouplings have so far failed to produce any useful 
approximations. We shall not be concerned here with this sort of 
procedure. 

Direct methods on the other hand seek to approximate the stochastic 
quantities themselves, such as the solution X(~) of Eq. (1). The averaged 
quantities such as moments and correlation functions are then calculated 
by performing the averaging over the realizations of the random force e ( r ) .  

Some examples of direct methods are (i)random Taylor series (3) in which 
X ( z )  is approximated by the first few terms of a power series in r; (ii) per- 
turbation theory, ~2~ where X(r) is approximated by a truncated power 
series in the nonlinearity parameter 2; (iii)the Wiene~Hermite method, ~4~ 
which may be obtained by approximating X(r) by a functional polynomial 
in e, this being chosen so that the approximation is good in some average 
sense; this method includes statistical linearization ~1~ as a particular case; 
(iv) direct numerical simulation. (5) 

The last two of these methods will be of most relevance to the work 
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reported here. An advantage of direct methods is that realizability con- 
ditions are not violated, a virtue which seems difficult to attain with 
decoupling schemes. 

In the first three of the direct approximation procedures mentioned 
above, the averaging over realizations of the random force e can be carried 
out analytically using the familiar properties of Gaussian random functions 
which enable higher-order correlation functions to be expressed in terms of 
the second-order one <e(~)e(z ' ) ) .  With direct numerical simulation this is 
of course impossible and some way must be found of representing e 
approximately in terms of a finite number of random variables which can 
be averaged over numerically. For  example, if we imagine the random force 
e to be approximated by a finite sum of terms of the form 

N 

j = l  

where {j(z) form an orthonormal set of nonrandom functions, then the 
averaging would be accomplished by multiple integration over the ~bj with a 
Gaussian weight function 

1 C_ (1/2)~2 
(2re)  N/2 

where ~b 2 denotes ~2f=1 ~bf. Clearly white noise has to be treated as a 
limiting case of true random functions. If the functions ~j(r) can be chosen 
so that a small number of terms in the sum provides an adequate 
approximation for e, then the integration over the ~bj can be performed by 
using a rule for numerical integration such as one of the Newton-Cotes or 
Gaussian rules. On the other hand, if a large number of terms is necessary, 
then the integration can be carried out only by a random (or pseudoran- 
dora) sampling technique and the method amounts to a Monte Carlo 
calculation. The number of realizations which must be sampled if the errors 
are to be acceptably small is often very large, unless some sort of variance 
reduction scheme can be employed, so that such calculations tend to be 
rather time consuming. It seems worthwhile to examine the question of 
whether the functions ~j(~) can be chosen so as to minimize the number N 
of terms required in the sum to approximate e. 

The usual approach to this type of problem involves the adoption of a 
least-squares criterion in which one seeks to minimize a mean-square error 

2) 
j =  1 
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with respect to the functions ~j and the random variables ~bj, where w(r) is 
a suitable weight function. If e is Gaussian with zero mean and correlation 
function R(r, z') then the optimum ~i are eigenfunctions satisfying the 
integral equation 

2j~+(r) = f d~' R(z, r') w(z') ~+(z') 

a result which is clearly not directly applicable to the white noise case. If 
the weight function w is chosen as unity then the series ~ CjCj(z) becomes 
the Karhunen-Lo6ve expansion. It should be remembered however that 
our aim is to find the best approximation for X and the weight function 
should presumably be chosen to reflect this fact. For example, if we wish to 
calculate X(t) for a particular value t, then any information about e(r) for z 
outside the interval (0, t) is irrelevant. Any effort expended in seeking to 
optimize the approximation for e outside (0, t) would be wasted and so 
clearly w should be chosen to vanish outside this interval. The appropriate 
form to choose for w inside the interval is rather more difficult to ascertain 
since it depends on the way in which errors in X(t) arise from errors in 
approximating e(r) for r in (0, t). This in turn depends on the particular 
equation of motion involved. We shall see later that a variational for- 
mulation of the problem resolves this question in a natural way. 

Assuming for the moment that the random force e has been represen- 
ted approximately by the finite series Zr the next step would 
apparently be the numerical solution of the equation 

N 

2 + / ~ x +  )~x 3 = ~ Cj~j(~) 
j = l  

followed by integration with Gaussian measure over the ~bj to calculate the 
mean values of interest. The variational method however shows that this is 
just the simplest of a series of approximation procedures, and numerical 
calculations indicate that it is the least effective. 

In Section 2 the variational principle will be introduced and used, with 
suitable trial functions, to generate approximations for the problem under 
consideration. In Section 3 the results of some numerical computations 
based on these approximations will be presented and a comparison made 
with the exact data available for the Bernoulli oscillator. In Section 4 we 
briefly describe some further ideas based on the variational approach. 

2. T H E  V A R I A T I O N A L  P R I N C I P L E  

The first problem which must be faced in seeking to provide a 
variational formulation of the sort of stochastic nonlinear equation con- 
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sidered here arises from the presence of dissipative terms. It is well known 
that, when such terms are present in the equation of motion, it is 
impossible to devise a useful functional of X alone which takes on a 
stationary value when X is a solution of the equation. There are several 
ways out of this difficulty, and some alternative ones are described briefly 
in the appendix, but the one which seems most convenient for our purposes 
is a stochastic version of that described, somewhat incompletely, by Morse 
and Feshbach (6) which makes use of a functional of X and a "conjugate" 
variable Y. It will be convenient in developing the formal theory to con- 
sider a rather more general equation of motion 

2(~) = A(X(z)) + e(z) (2) 

where A is a polynomial function of X. 
Consider then the quantity 3 defined by 

J=(X( t ) - ; ]d~  Y(r)[k(r)-A(X(r))-e(~)]} (3) 

where X(r), Y(v) are arbitrary random functions defined on the interval 
(0, t) and satisfying the two end point conditions 

X(O) = Xo 
(where Xo is the given initial value) 

r ( t ) =  1 

The variation of J for arbitrary variations of X and Y can be written, after 
integration by parts in the usual way, in the form 

5J= - m 6Y('O[J((z)-A(X(z))-eO:)] 

+ fo dz3X(r)[f(z)+ Y(r) A'(X(r))]} 

Thus 3 J  = 0 for variations of X and Y about the solutions of the equations 

x(,c) = A(X(v ) )  + e(v), 

/ ' (~) = - r ( ~ )  A ' ( X ( ~ ) ) ,  

i i (0 )  = x0 
(4) 

r ( t )  = 1 

and conversely, if 3 J  = 0 for arbitrary variations fiX, b Y, then X and Y 
satisfy these equations for almost all realizations. Moreover the stationary 
value ~tat is seen to be <Z(t)}. 
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Approximations for {X(t)) are obtained by seeking a stationary value 
of ~r when X and Y vary over a restricted set of random functions for 
which J can be evaluated. It will be assumed that such a restricted 
stationary value gives a reasonable approximation to the true one if the 
functions X and Y are of a sufficiently general form. The variational prin- 
ciple can also be looked at in a slightly different way as follows: If Eqs. (4) 
can be solved for X and Y to an accuracy of order e for the vast majority of 
realizations, then the evaluation of J gives an approximation for (X(t))  
which is accurate to order g2. Although the variational principle is not an 
extremal one it can nevertheless provide a useful means of generating 
approximations. A similar situation is found in other branches of physics 
such as quantum scattering theory. ~7~ 

Other moments can be dealt with in a similar way. For example, if we 
define the quantity 

J= I X~(t)- n f~ d~ Y(~)[k(~)- A(X(z)) - e (~ ) ] )  

for random functions X and Y satisfying the conditions 

X ( 0 )  = Xo 

Y(t) = X" '( t)  

then the stationary value of J, attained when X and Y satisfy the same 
equations as before but with Y ( t ) = X  ~ l(t), is (X~(t)}. For  some trial 
functions it may not be possible to impose the condition Y ( t ) = X  ~ l(t). 
However it is sufficient to require that 

( a x ( t ) [  Y ( t )  - x ~ -  ~(t)] ) = 0 

In their discussion of this variational method, in its nonstochastic 
form, Morse and Feshbach express the view that it is unlikely to prove to 
be more than a formal mathematical construction since the conjugate 
variable Y satisfies an equation with negative dissipation if a dissipative 
term appears in the equation of motion for X. However, they fail to take 
account of the fact that the direction of time is essentially reversed in the 
equation for Y since it satisfies a final rather than an initial condition. We 
maintain on the contrary that the quantity Y(r) is of direct physical 
significance since it describes the response of the system to small changes in 
the applied force. This can easily be verified by writing down the equation 
for the variation 6X arising from a variation 6e, 

~SX(v) = 6X(~) A'(X(v)) + 6e(z) 
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If we multiply this by Y(z) and then add to it the equation obtained by 
multiplying by 6X(v) the equation for Y(z) we get 

d 
[Y(r)  6X(z)] = Y(v)6e(r) 

Integrating over the time interval (0, t) and using the fact that 6X(0)=  0, 
Y(t) = l, we obtain 

~)X(t) ~- dr Y(z) c~e(z) 

so that Y(r) determines the linear response of the system. It is interesting to 
note in passing that the conjugate variables introduced in this variational 
formulation of the problem satisfy the same equations of motion as do the 
conjugate operators introduced by Martin, Siggia, and Rose in their 
operator formalism of classical statistical dynamics. (8'9) 

In order to make use of the variational method a choice of trial 
functions must be made and this will be done in such a way as to throw 
some light on the questions raised in the Introduction. In a numerical 
approach to the problem the random force e(z) would be represented 
approximately by a finite number of quantities which might be, for exam- 
ple, the expansion coefficients mentioned earlier or the values assumed by 
e(r) on a finite set of r values. The quantities chosen for this purpose would 
normally be linear functionals of e. If the equation for X could be solved 
exactly, with e approximated in this way, then the solution would be a 
function of these same linear functionals. We are therefore led to investigate 
trial functions for X and Y of the form 

X(z) = F(z, ~b) (5) 

where F and G are arbitrary functions and cb denotes (cb 1 ..... ~N), a set of 
N linearly independent linear functionals of e on the time interval (0, t) of 
interest. We can write 

@s = dr ~j(z) e(v) (6) 

where the ~j may be ordinary or generalized functions. We shall often refer 
to these as basis functions. For  the moment we shall regard the ~j  as fixed 
so that, in the variational principle, only the form of the functions F and G 
is to be varied. The ~s will be referred to as reserved functionals for reasons 
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which will become apparent later. Since a function of the ~j can be rewrit- 
ten as a function of N linearly independent linear combinations it is clear 
that, without loss of generality, we may assume the qsj to be mutually 
orthogonal. If it is assumed that, for no j do we have (cb 2 ) = 0, then the 
functionals may be normalized so that 

( o s j e , )  = aj, (7) 

and hence the basis functions are orthonormal on (0, t) 

A functional ~bj such that (~b~)=0  would be zero for almost all 
realizations and would therefore play no useful role if included in the trial 
functions. 

Substituting these trial functions into the expression for J we have 

Y= f d(~ (a(r > {F(t, ~) 

L - dr G(z, O) P(~, O)-A(F(r, 0)) 

where ~d~b denotes the > f o l d  integration ~dc~x"'~~176 N 

Because of the orthonormality of the qsj we have 

1 _ ( l / 2 ) ~ b  2 (6(~b- 05)) = ~ e  

and 

with ~b2= ~bj~bj, where a summation over repeated indices is implied here 
and henceforth. The ratio 

<e(~) a(O - 05)) 
( 6 ( ~ - q 5 ) )  = ( e ( r ) )+  

is the conditional expectation value of e(r) given that r ~bj for j =  1 ..... N. 
Its value may easily be found by using the Fourier representation of the 
function and the expression for the characteristic functional of a Gaussian 
random function. We find that 

(e(~))~  = ~Ai(~) 
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Thus 

1 e -  {F(t, O) 

- & G(r, r ~ ) -A(F(~ ,  ~b))-~j~j(r)] (9) 

and the variation 6J ,  for variations 6F, ~G which are arbitrary apart from 
the conditions 6F(0, ~ ) =  0, 6G(t, ~b)= 0, is given by 

cSd - (2~r)~v/~lfd~e (~/2)~2 { _ fod.c6G(~,(~)[p_A(F)_q~Sj(r) ] 

Jo } + dr 6F(r, ~b)[(~ + GA'(F)3 

The condition for a stationary point is therefore 

F= A(F) + (bj~j(z) (lo) 
4 = -GA'(F) 

and the stationary value, which is our approximation for (X(t)), is 

1 d : ~ t ~ t = ~  f d(~e (1/2)42F(t, ~) (11) 

Note that the quantity G need not be determined for the evaluation of 
(X(t)) within this approximation. This is the first of the approximation 
procedures to be examined in more detail later. It may easily be verified 
that it becomes exact in the limit as the random forcing term becomes zero. 

It should be noted that, for the calculation of (X(t)) the basis 
functions ~j(z) form an orthonormal set on the interval (0, t) and so this set 
of functions should be chosen according to the value of t under con- 
sideration. If one avoids this complication by using the same set of basis 
functions for all values of t the resulting approximations are found to be 
slightly less accurate. This is not surprising since any information about 
e(z) outside the interval (0, t) is irrelevant for the evaluation of (X(t)). 
However there is a considerable reduction in the computation involved. 

The approximation procedure derived above may be described in the 
following terms: 

(i) The set of all realizations of the random force e is divided into 
subsets according to the values of the functionals ~j. 
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(ii) In each such subset J( is approximated by a "constant," i.e., a 
quantity independent of e, this constant being taken as the solution of the 
equation of motion with e replaced by its conditional expectation value. 

(iii) Finally (35) is calculated by performing the Gaussian averaging 
over the variables ~bj. 

The functionals q~j are therefore seen to play a similar role to that of 
the reserved variables in Feynman's approximate treatment of functional 
integrals. (1~ We shall call this approximation the piecewise mean value 
approximation or PMVA for short. The approximation could be obtained 
without making use of the variational method but the virtue of our 
derivation is that it leads in a natural way to improvements on the basic 
idea as we shall now see. 

There is an obvious analogy between the treatment here of the depen- 
dence of X on the random force e and the approximate representation of an 
ordinary function of a single variable by means of a step function as might 
be used, for example, in deriving the rectangle rule for numerical 
quadrature. This analogy suggests two obvious ways in which the 
approximation might be improved: 

(i) The step function could be replaced by a polygonal line function 
so that, in each subinterval, the function is approximated linearly. 

(ii) The subdivision could be adapted to the function in question 
with small subintervals where the function is varying rapidly and larger 
ones where the variation is slower. 

These ideas can readily be incorporated into the trial functions for the 
problem under consideration. Taking (i) first it is clear that the appropriate 
trial functions are 

fo X(r) =/7(~, @) + dz' K(~, v', qs) e(z') 

r(z) = ?'(~, q~) + dz' L(~, <, ~) e(<) 

where ~:, K, T, L are arbitrary functions. In each subset of realizations, 
characterized by definite values ~bj of the reserved functionals ~bj, X and Y 
are linear functionals of e. It is more convenient to separate off the con- 
ditional mean value of e by writing 

e(~) = ~j(z) ~j + 8(z) 
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so that 
(,~(• = 0 

(s(~-) s(~ ' )  ),~ = ,'(~-, t ' )  = ~s(• - ~ ' )  - , ; j ( -c)  C j ( ~ ' )  

The functions X and Y may then be rewritten in the form 

X(r) = k(r, qs) + dr' K(r, r', q~) ~(z') 
(12) 

fo Y(r) = l(r, ~b) + dr' L(r, r', qs) g(z') 

Substituting in the expression for J gives for the Bernoulli oscillator 

, { y - (2 r r )~  f de e -~1/21~2 k(t, r 

So L - dr t(,c, r ~(r, r + flk(,c, r + ,~k3(,c, r 

+ 3)~k(,c, O) dr' dr" K(r, zz', r K(r, zz", r r(,c', zz") - ~j(z) Cj 

- j dr dr' L(z, zz', r dr" K(,c, z", r r(,c', r") 
0 

+ fl dr" K(z, ,c", O) r(,c', z") + 32k2(,c, r dr" K(r, r", r r(z', ,c") 

+ 32 de" dT~ 2 dr3 K(z, ~", r K(z, z2, ~b) K(z, z3, r 

x r(,c',r")r(z2,• dr"r(r',,c")g)(r--r') 

Equating &r to zero gives equations for k, K, l, L, but, since we do not 
need ! and L for the calculation of the stationary value, we present only the 
equations for k and K. These are 

/~(r) + ilk(r)+ 2k3(r)+ 32k(,c)f] dr1 f~ dr2 

X K{~, ~71) K({ ,  {2) r ( 'c l ,  "[2) = ~j(~) Cj 

K(z, z') + [fl + 3)~k2(,c) + 3). fodrl fodr2 

x K(,C, T1) K(r, • r('cl, "C2)~ K(z, T f ) 
J 
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If we define 

Phythian and Curtis 

p(z)=- dz 1 &2K (z ,  z l )K ( z ,  zz) r(zl,~%) 

fo s(~) = dz' [/~ + 3,~k2(~ ') + 3;~p(r')] 

it is easily verified that 

K(v, ~c')= 0(z - z ' )  e-[s(~)-- s(,')~ 

where 0(z) is the step function 

1,, ~ > 0  
0(~)-- 0 z < 0 

The equations can then be rewritten in the more convenient form, 

[c + fik + 2k 3 + 32kp = ~j(r) ~j 

= fi + 32k 2 + 3Zp 

If: ;} p(r) -- e -2,t~) clz' e 2~(~') - E a '  ~j(r') e sl~') 
J 

(13) 

with k (0)=  x0, s(0)= 0 and the approximation for ( X ( t ) )  is 

1 
(2/~)N/2 f d(~ e (1/'~)r r 

This is the second approximation to be examined later and may be 
described as a piecewise statistical linearization approximation (PSLA). It 
may easily be verified that the approximation is exact when there is no ran- 
dom force or when the nonlinear term is absent from the equation of 
motion. For the case when N =  0 it is seen that one recovers the simplest 
nontrivial Wiener-Hermite approximation. (4/ This approximation, which 
we shall refer to as statistical linearization, has been "rediscovered" recently 
and applied to the Bernoulli oscillator and other simple systems by several 
authors.m ~3) 

It is not difficult to generate further approximations of this type by 
utilizing for X and Y trial functions of the form 
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ko(r, qs) + d~m ki(r, %, q~) e(%) 

q- dT 1 d~ 2 k 2 ( z ,  T21, "C2, (I)) e(ri) e(r2) + " "  

+ & l " ' "  &,k , ( r ,~ l , . . . ,%,qS)  e ( % ) ' " e ( % )  

1031 

which may be rewritten in terms of Wiener-Hermite functions.(4~ However 
the proliferation of multivariable functions leads to a rapid increase of 
complexity with n. Instead of pursuing this further we now turn to the con- 
sideration of the second way of generalizing the trial functions. 

It was noted earlier that the division of the set of all realizations of the 
random force e into subsets, which features in the approximations con- 
sidered above, is determined by the choice of the reserved linear functionals 
Cj. It is apparent therefore that it would be advantageous to choose the 6o i 
so as to optimize the approximation. This is readily achieved within the 
variational principle since it is merely necessary to allow variations in the 
Cj as well as in the form of the functions F and G in the trial functions 
F(r, q~), G(r, q~). This means that the basis functions ~j are subject to 
variation in the variational principle. It will be convenient to assume as 
before that the reserved functionals form an orthonormal set so that the 
functions ~j satisfy the N ( N +  1 )/2 subsidiary conditions 

It seems reasonable to assume that these can be imposed since a stationary 
point for which any of the ~j are null functions is unlikely to be of interest. 

We therefore seek the stationary value of 

- dr a(r, r [~/'(~, r - A(F(z, r - ~bj~j(~)] 

with respect to variations of F, G and the ~j with these subject to the above 
subsidiary conditions. Introducing the symmetric matrix 7 of Lagrange 
multipliers we consider the equation 
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Equating to zero the terms in 6G and 6F we recover the same equations for 
F and G obtained before, i.e., Eqs. (10). The term involving the 6~j is 

and so we obtain the additional equation 

1 
(2n)N/2 f dO e-(1/2)o2OjG(z, O)= Yj,r 

If we define 

1 
bj(T,) =- ~ f d O e--(1/2)q)20jG('c , O) (14) 

and the symmetric matrix C with elements given by 

fo Cjl = dr bj(~) bt(z) 

it is seen that 7 = C1/2 so that 

U , )  = (c-~/2)j~ b~(,) 

(15) 

(16) 

These last three equations together with equations (10) for F and G and 
the expression (11) for the stationary value ~stat fully describe the 
approximation. It will be observed that the quantity G now plays an essen- 
tial role in the equations thus confirming the qualitative observation which 
was made in the Introduction, namely, that the way in which the random 
force e is approximated by means of a finite set of random variables should 
take into account the way in which the resulting errors give rise to errors in 
X itself. 

It is easily verified that if F, G, b, C, ~j satisfy these equations then so 
too do the transformed quantities F, ~, ~, ~, ~'i defined as follows: 

['(z, O)=F(z, M-IO)  

(~(z, 0) = a(z, M ~r 

bj('c) = Ms, b~(z ) 

= M C M -  1 
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where M is an orthogonal matrix. This is not surprising since the actual 
trial functions for X and Y are unchanged by this transformation. We have, 
for example, P(r, ~ ) = F ( r ,  qs) where the transformed functionals ~j are 
calculated with the ~'j. This freedom could be used to ensure that the sym- 
metric matrix C has a diagonal form. 

This in the third of the approximations to be investigated numerically 
in the next section and will be referred to as the optimized piecewise mean 
value approximation (OPMVA). An alternative formulation of this 
approximation, and one which is likely to prove more convenient in prac- 
tice, can be obtained by noting that the stationary value ~ s t a t  of ..f with 
respect to variations of F, G, and the ~; can be calculated by first seeking 
the conditional stationary value J ~ )  I-S] with respect to F and G with the " s t a r  k ' ~  A 

~j held fixed. The quantity Jsta, can then be determined by finding the 
stationary value of J ~ t [ ~ ]  with respect to variations in the ~;. This could 
be achieved approximately by choosing for the ~j suitable trial functions of 
a particular form containing a number of adjustable parameters. These 
parameters would then be varied to obtain a stationary value. This 
approach would be particularly advantageous for optimizing the PSLA 
with respect to the basis functions since in that case the full equations are 
rather complicated. 

Our discussion so far has concentrated on the mean value (X(I)) but 
it is possible to generate approximations for the higher moments by using 
the same sorts of trial functions in the variational expressions for (X~(t)). 
When this is done it is found that, for the type of trial function which yields 
the PMVA, we have 

1 

where F satisfies the same equation as before, i.e., Eq. (10). Using the trial 
function which gives the PSLA we obtain 

1 
(X2( / ) )  - (27~)N/2 f d~ e-(1/2~(k2 + p) 

1 
(X3( / ) )  = (27z)N/2 f d~ e-(1/2)r + 3kp) 

1 <X4(t ) )=~ f d~e ~ +6k2p+ 3p2) 

where k and p are determined by solving Eqs. (13). Thus the same set of 
equations has to be solved for calculating all the moments. This is no 

822/42/5-6-20 
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longer the case for the corresponding optimized approximations since the 
boundary conditions differ according to the particular moment being 
calculated. Thus, for example, the optimum basis functions for the 
calculation of <X2(t)> will be different from those involved in the 
calculation of <X(t)>. For this reason we shall confine ourselves to the 
consideration of the mean value <X(t)> for the optimized approximations. 
It should also be noted that the satisfaction of realizability inequalities 
relating different moments cannot be guaranteed. 

3. C A L C U L A T I O N S  FOR THE BERNOULLI  OSCILLATOR 

Values of the first four moments <X(t)> ..... <X4( t )>  have been 
calculated by Eaves and Reinhardt (1/ by using a high-order truncation of 
the coupled equations for the moments. Although this method appears 
intractable for systems with several degrees of freedom and cannot be 
applied to systems driven by a random force which is not white noise it 
yields accurate values for the problem under consideration. These provide a 
valuable means of checking other approximation procedures, such as those 
described here, and we shall therefore limit our considerations to those 
values of the parameters of the problem used by these authors: namely, 
f i= f l=  1, xo=2,  with 0~t~<4. 

For the PMVA and PSLA it is necessary to choose an orthonormal 
set of basis functions for each value of t considered. We shall choose these 
to be polynomial functions of ~. When orthonormalized on the interval 
(0, t) they may be expressed in terms of Legendre polynomials P as follows: 

where, for convenience, we now label from j = 0. The PMVA values for the 
first four moments have been evaluated for N-- 1, 2, 3 using a fourth-order 
Runge-Kutta method for the solution of the differential equation and 
Simpson's rule for the numerical integration. The percentage errors in the 
values obtained for <X(t)> are shown graphically in Fig. 1 and the 
corresponding results for the other three moments in Figs. 2~4. 

It will be seen that, in general, the percentage errors become rather 
large as t increases especially for the odd moments. It should be remem- 
bered however that the odd moments tend to zero for large t so that the 
absolute errors are not necessarily large. Also it is not apparent that the 
approximations necessarily improve as the number N of reserved variables 
is increased. It seems intuitively obvious however that the approximation 
would become exact in the limit as N ~  oo. Hence it must be concluded 
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Fig. 1. The percentage errors in the values of (X(t ) )  given by the PMVA and OPMVA. The 
curves (a), (b), (c) correspond to the PMVA for N= 1, 2, 3, respectively, and the curve (d) to 
the OPMVA. 
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Fig. 2. The percentage errors in the values of (j(2(r given by the PMVA. The curves (a), 
(b), (c) correspond to N =  1, 2, 3. 
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that, within this scheme, it is necessary to choose N large and then to 
evaluate the integrals by the random sampling method. The calculation is 
then essentially equivalent to a Monte Carlo simulation, different variants 
of this method being obtained according to the choice of basis functions. 
Also shown in Fig. 1 are the results obtained by means of the OPMVA. 
The modest improvement obtained with this approximation suggests 
strongly that the conclusion reached above is unlikely to be altered no mat- 
ter how the reserved functionals are chosen. The calculations for the 
OPMVA were carried out by solving the coupled equations (10), (11), 
(14), (15), and (16) by an iteration procedure with respect to ~(~). Four 
iterations were found to be sufficient for the required accuracy when the 
initial guess for ~(~) was taken as a constant. Other initial guesses gave a 
similar rapid convergence. The form of the optimum basis function which 
emerges from these calculations is shown in Fig. 9, which corresponds to 
t = 0.6. A curve of similar shape is obtained for other values of t. 

In Figs. 5-8 are shown the percentage errors in the values of the 
moments calculated by means of the PSLA for N = 0, 1, 2, 3 with the same 
choice of basis functions. It will be observed that the errors are reduced to 
a more acceptable level for all the moments over the whole range of t 
values. Moreover, in most cases, the approximations improve as N 
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Fig. 5. The percentage errors in the values of (X(t)) given by the PSLA. The curves (a), 
(b), (c), (d) correspond to N = 0 ,  1, 2, 3. 
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The percentage errors in the values of (X2(t) )  given by the PSLA. The curves (a), 
(b), (c), (d) correspond to N = 0, 1, 2, 3. 
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Fig. 7. The percentage errors in the values of (X3( / ) )  given by the PSLA. The curves (a), 
(b), (c), (d) correspond to N = 0 ,  1, 2, 3. 
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increases. The dependence of the results on the choice of basis functions 
appears not to be very great. Even when these are taken to be independent 
of t the errors are not increased appreciably and the computation time is 
considerably reduced. We conclude that, within the PSLA scheme, it is 
possible to obtain useful results with small values of N so avoiding the dif- 
ficulties of the random sampling approach. 

4. F U R T H E R  C O N S I D E R A T I O N S  

The trial functions which we have used here were chosen to throw 
some light on the questions posed in the Introduction and by no means 
exhaust all the possibilities. An obvious generalization would be obtained 
by allowing the reserved linear funetionals to be time dependent so that the 
trial functions for X and Y, to generate an analog of the PMVA, would be 
of the form 

x ( e )  -- F(e, r 

~'(e) = ~(~, r 

where q~(e) denotes a set (q~l(e),..., q~N(~)) of time-dependent linear 
functionals of e which can be written in the form 

qs j(e) = f clz' ~j(e, e') e(e') 

An attractive feature of such a trial function is that it can be made to reflect 
the causal relationship between X and e if we choose the ~j(e, e') to vanish 
for ~ < e'. Note however that this imposes an incorrect causal relationship 
between Y and e. Considering for simplicity the case in which the 4: are 
fixed we obtain from the variational principle the equation for F 

~F 
[ ' -  A(F) + ~ Aj,(e) ~)l = ~{)jI!lj(e) 

where 

and 

r = ~j(e, e) 

Ajt(e ) = -Atj(e) = f dr' ~j(e, e') ~l(e, e') 

It will be seen that the equation involves partial derivatives if N >  1. 
However these can be removed by replacing the reserved functionals ~bj(z) 



Variational Approach to Stochastic Nonlinear Problems 1041 

by an equivalent set ~i(r) obtained by means of a time-dependent 
orthogonal transformation M(z). If M is now chosen to satisfy the 
equation 

if4 = - M A  

which is compatible with the orthogonality of M since A is antisymmetric, 
then the transformed A vanishes identically. Thus the equation for F can 
always be reduced to an ordinary differential equation. A preliminary 
investigation of the resulting approximations indicates some improvement 
over those obtained with time-independent reserved functionals. Similar 
considerations can be applied to the PSLA but no calculations have yet 
been carried out. 

Mention has already been made of the possibility of going beyond 
statistical linearization and considering higher-order piecewise 
Wiener-Hermite approximations. We could obtain a more restricted, but 
mathematically simpler, approximation by including in the trial functions 
terms such as 

dr' dr" H(r, r', r", el)) e(z') e(r") 

where H is a suitably chosen function containing adjustable parameters 
which would be varied to obtain a stationary value of J .  This would 
remove the complication of having to deal with unknown functions of 
several variables. 

An unfortunate but apparently inescapable feature of systematic 
approximation procedures for stochastic nonlinear problems is the rapid 
increase in the amount of computation involved in evaluating the 
approximations as one progresses from the simplest in the sequence to 
more and more elaborate ones. Sooner or later the approximations cease to 
be competitive with direct numerical simulation of the problem. The 
procedures considered here are no exception but the approximations with 
one or two reserved functionals are likely to be attractive. To achieve the 
same order of accuracy as one gets with the PSLA with N = 1 by means of 
direct numerical simulation of the problem one needs to sample many 
thousands of realizations and the computation time required is hundreds of 
times greater. 

The question then arises of whether these approximations can usefully 
be applied in other situations. Preliminary calculations have been carried 
out for diffusion in a double-well potential in which the particle starts from 
the point of unstable equilibrium. This is a much more stringent test of 
approximations than the single-well potential problem so that, for example, 
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ordinary statistical linearization fails completely. However the PSLA with 
N-- 1 is found to give quite accurate results. The dependence on the choice 
of basis function is more sensitive so that some optimization with respect to 
this function is needed. Another problem for which calculations have been 
carried out, using the PSLA, with promising results is that concerned with 
the motion of a marked fluid particle in a Gaussian random flow. This 
work will be described in a future paper. 

The higher approximations with N > 2  can of course be evaluated 
approximately by using the random sampling technique for the calculation 
of the N-fold integrals. Indeed, if N is large, such a calculation is essentially 
a Monte Carlo simulation of the problem. It would be interesting to com- 
pare such a simulation based on the PSLA with a more conventional one. 
However the simulation could be made much more efficient by using one of 
the simple approximations as the basis of a variance reduction scheme. The 
method of correlation sampling (14) for the evaluation of the integral 
~bf(x)  dx is based on the simple observation that 

f ( x )  dx = g(x) dx + If(x)  - g(x)] dx 

If g is a function which approximates f in the interval in question, and 
which is such that the integral f~ g(x) dx can be found accurately, then the 
calculation of the second integral on the right-hand side by the random 
sampling technique provides a more effective method for approximating 
~b a f ( x )  dx than the direct evaluation of this integral by random sampling. 
The reason of course is that the variance of ( f -  g) is expected to be much 
less than that off.  To apply this idea to the problem considered here let kj 
denote the solution of the PSLA with j reserved functionals. Then we can 
write 

1 f dr f den e - (1 /2)(r  '" + r , r  CN)  (27r) N/2 

1 
- -  (27z)N/2 f dO1 e-(1/2)O2kl( t, q~l) 

1 + ~ f dOl"" f dON e - (1 /2) (r  "' +r r ON)- kl(t, ~ 1 ) ]  

The first integral on the right-hand side would be evaluated by Simpson's 
rule, for example, and the second integral by sampling, using Gaussian 
pseudorandom numbers for the Cj, to give the approximation for (X(t) ) .  
In situations where ordinary statistical linearization is a fair approximation 
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one could replace kl by ko in the above. A useful indication of the error 
involved in the simple approximation would also be obtained by estimating 
the variance of the second integral in the usual way. 

5. C O N C L U S I O N  

Although more remains to be done in assessing the relative merits of 
the various approximations derived here we feel that it has been clearly 
demonstrated that the variational approach to stochastic nonlinear 
problems is worthy of further investigation. In particular it would appear 
that piecewise statistical linearization with a small number of reserved 
variables, which are subject to some degree of optimization, might 
profitably be employed for more complicated systems. Perhaps the greatest 
virtue of the variational method is its comparative mathematical "honesty" 
since it involves no dubious decoupling assumptions, no formal 
manipulations of divergent series, and no inbuilt preconceived physical 
assumptions. Finally it should be mentioned that, although the whole dis- 
cussion here has been confined to a particular system with a single degree 
of freedom, the theory may be readily generalized in a number of ways: 

(i) Systems with several degrees of freedom may be considered. 

(ii) The random forcing term may not take the form of white noise. 

(iii) The random force may appear in the equations of motion in a 
stochastically nonlinear manner. 

(iv) The possibility also exists of treating non-Gaussian forcing 
provided that the characteristic functional of the force is known in closed 
form or the force is given as a finite Wiener-Hermite series in terms of a 
white noise function. 
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A P P E N D I X :  A L T E R N A T I V E  V A R I A T I O N A L  M E T H O D S  

Apparently the most straightforward variational method for the type 
of problem considered here is that described by Kraichnan (15 17~ in which 
one seeks to minimize a mean-square error given by 

E =  t f  ~ dz p(~ ) [ J ( ( r ) - A ( X ( ~ ) ) - e ( r ) ] 2 )  
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where p(r) is a positive weight function. If A is a polynomial function, E 
can be expressed directly in terms of the correlation functions up to some 
finite order of the random functions X(r), e(r). The minimization can then 
be carried out with respect to these correlation functions provided that 
they can be chosen to satisfy the realizability constraints. Alternatively of 
course one can take suitable trial functions for the random function X(r) 
itself. A difficulty however is that the time dependence of this trial function 
cannot be left unrestricted and must be given in some parametrized form. 
For example, if we were to use for X(z) a trial function of the form F(~, 4) 
considered earlier, then the variation 6E would involve bF and 6P. The 
usual integration by parts procedure for the removal of the latter is not 
available to us since 6F does not necessarily vanish at the upper limit of the 

integration. Other disadvantages of this approach are the appearance of 
an arbitrary weight function p and the fact that quantities of interest are 
not calculated as stationary values. The importance of formulating 
variational principles in such a way that the quantities of interest are 
expressed as stationary values of functionals of trial functions has been 
stressed in a recent review by Gerjuoy et alJ 18) 

A variational method, closely related to this one, but which removes 
the difficulty of restricted v dependence has been familiar for some time in 
quantum mechanics where it is known as the Frenkel variational 
method. (19) It can also be formulated for classical stochastic problems. (2~ 
Let us assume that the time derivative in the equation of motion has been 
approximated by a forward difference with time step h so that the equation 
is replaced by the difference equation 

X n +  1 - X n 

h 
- A ( X . )  + e .  

The best approximation of a particular form is obtained by a step-by-step 
least-squares procedure. Assuming that X ~ ' " X n  have already been deter- 
mined, Xn+~ is then found by minimizing the mean-square error for the 
next time step to give 

Since X, is not subject to variation we obtain 
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and taking the limit as h ~ 0 to return to the original equation of motion 
gives 

( 6 x ( O  [ 2 ( 0  - A ( X ( O )  - e ( O ]  ) = 0 

It may easily be verified that, if the arbitrary functions subject to variation 
appear only linearly in the trial function X(z) ,  then this variational method 
yields the same approximations as does the one we have used. This is no 
longer the case when the arbitrary functions appear nonlinearty in X. Thus 
we can recover the PMVA and PSLA by this method but not the 
corresponding optimized approximations. 

Other variational methods can be obtained by first formulating the 
problem in terms of functional integrals. For the simple system considered 
here this is very easy to do since the associated Fokker-Planck equation 
can be rewritten as a Bloch equation by means of a simple transformation 
and the probability density function can therefore be expressed as a Feyn- 
man path integral with real exponent. (2~'2z) The Feynman variational prin- 
ciple can then be applied directly. For more complex dissipative systems a 
functional integral representation of the probability density can still be 
obtained but cannot in general be expressed in the standard Feynman 
form. If the equation is 

2~ = A s ( X )  + e~(~) 

where e~(r) is Gaussian with zero mean and correlation function 

(G('c)  ee(z' ) ) = d=/~a(z - z') 

then the functional integral for the conditional probability density 
P(x, t lx', t') that the system is in state x at time t given that the state was 
x' at time t' is given by (23) 

f~ x<=+ , D[x] f D[y] e -sF~'~3 
( x ( t ' )=  x'  J 

where 

SEx, y3 = I,[ a+ - 

and the y are auxiliary functions which generate the response functions of 
the system. The quantity S is complex so that the inequality on which the 
Feynman extremal principle is based is inapplicable. However it may easily 
be verified that f e - s  is still given by the stationary value, with respect to 
So, of the quantity 

W =  e - < s -  So)o | e - S ~  
d 



1046 Phythian and Curtis 

where 

( S -  S o ) o =  f ( S -  S o ) e - S ~  e-S~ 

Approximat ions  to the condi t ional  probabi l i ty  density P can be obta ined  

by seeking the s ta t ionary value of W as So is allowed to vary over a restric- 

ted set of functionals  such that  W is well defined and  can be evaluated. 
An alternative procedure is to first carry out  the in tegra t ion  with 

respect to y in the expression for P. The resulting funct ional  integral is then 

of a form to which the F e y n m a n  extremal principle can be applied. 

At tempts  to find useful approx imat ions  in this way have however proved 
disappoint ing.  (24) 
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